规律数组的打印

规律数组的打印

【北京直真笔试题】打印数组如下4*4数组,要求打印N*N的数组?

1  12  11  10

2  13  16  9

3  14  15  8

4   5   6  7

【思路】:

 

1.发现规律;如上图所示,仔细发现是有规律的,先第1234步骤;我们发现第567…步骤和前面的1234步骤是相同的,只是边界值不同。

2.考虑实现;实现的问题转换为先定义二维数组,数组的元素为0.然后的操作就是填值的过程。边界值的确定采用层层剥离的思想。我们容易看出循环的次数正是N/2次。存在当N为奇数时需要单独处理最后一个数的情况。

 【算法实现】:

//design[思想:层层剥离.]

void designArray(int nArray[][g_nCnt], int nSize)
{
        int nBase = 1;
         for(int i = 0; i < g_nCnt/2; i++)
         {
                  for(int j = i; j < g_nCnt-i; j++)
                   {
                           nArray[i][j] = nBase++;
                   }

                   for(int j = i+1; j < g_nCnt-i; j++)
                   {
                            nArray[j][g_nCnt-i-1] = nBase++;
                   }

                   for(int j = g_nCnt-i-2; j >= i; j--)
                   {
                            nArray[g_nCnt-i-1][j] = nBase++;
                   }

                   for(int j = g_nCnt-i-2; j > i; j--)
                   {
                            nArray[j][i] = nBase++;
                   }

                   if(nSize%2 == 1)
                   {
                           nArray[nSize/2][nSize/2] = nBase;
                   }
         }//end for i
}

 

//printArray
void printArray(int nArray[][g_nCnt], int nSize)
{
        static int s_nCnt = 0;
         cout << "----------------------DESIGN " << ++s_nCnt ;
         cout << "----------------------"  << endl;
         for(int i=0; i <nSize; i++)
         {
                  for(int j =0; j < nSize; j++)
                   {
                      cout << nArray[i][j] << "\t";
                   }//end for j
                   cout << endl;
         }//end for i
         cout << "----------------------\\DESIGN " << s_nCnt ;
         cout << "----------------------"  << endl; 
         cout << endl << endl;
}

 

 

void designArray_t(int nArray[][g_nCnt], int nSize)
{
         int nBase = 1;
         for(int i = 0; i < g_nCnt/2; i++)
         {
                   for(int j = i; j < g_nCnt-i; j++)
                  {
                       nArray[j][i] = nBase++;
                   }

                   for(int j = i+1; j < g_nCnt-i; j++)
                   {
                       nArray[g_nCnt-i-1][j] = nBase++;
                   }

                  for(int j = g_nCnt-i-2; j >= i; j--)
                  {
                        nArray[j][g_nCnt-i-1] = nBase++;
                   }

                    for(int j = g_nCnt-i-2; j > i; j--)
                   {
                           nArray[i][j]= nBase++;

                   }

                   if(nSize%2 == 1)
                   {
                            nArray[nSize/2][nSize/2] = nBase; //N为奇数,最后元素的处理.    

                   }
         }//end for i
}

     [运行结果]:

      

        或者大家还有什么好的思路,欢迎交流探讨!

©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页